Troubleshooting EVPN
This section provides various commands to help you examine your EVPN configuration and provides troubleshooting tips.
General Commands
You can use various NVUE or Linux commands to examine interfaces, VLAN mappings and the bridge MAC forwarding database known to the Linux kernel. You can also use these commands to examine the neighbor cache and the routing table (for the underlay or for a specific tenant VRF). Some of the key commands are:
ip [-d] link show type vxlan
(Linux)nv show bridge domain <domain> mac-table
(NVUE) orbridge [-s] fdb show
(Linux)nv show bridge domain <domain> vlan
(NVUE) orbridge vlan show
(Linux)nv show bridge vlan-vni-map
(NVUE)nv show bridge domain <bridge> vlan-vni-map
(NVUE)nv show interface neighbor
(NVUE) orip neighbor show
(Linux)ip route show [table <vrf-name>]
(Linux)
The sample output below shows ip -d link show type vxlan
command output for one VXLAN interface. Relevant parameters are the VNI value, the state, the local IP address for the VXLAN tunnel, the UDP port number (4789) and the bridge of which the interface is part (bridge in the example below). The output also shows that MAC learning is off on the VXLAN interface.
cumulus@leaf01:~$ ip -d link show type vxlan
14: vni10: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9216 qdisc noqueue master bridge state UP mode DEFAULT group default qlen 1000
link/ether 42:83:73:20:46:ba brd ff:ff:ff:ff:ff:ff promiscuity 1 minmtu 68 maxmtu 65535
vxlan id 10 local 10.0.1.1 srcport 0 0 dstport 4789 nolearning ttl 64 ageing 300 udpcsum noudp6zerocsumtx noudp6zerocsumrx
bridge_slave state forwarding priority 8 cost 100 hairpin off guard off root_block off fastleave off learning off flood on port_id 0x8005 port_no 0x5 designated_port 32773 designated_cost 0 designated_bridge 8000.76:ed:2a:8a:67:24 designated_root 8000.76:ed:2a:8a:67:24 hold_timer 0.00 message_age_timer 0.00 forward_delay_timer 0.00 topology_change_ack 0 config_pending 0 proxy_arp off proxy_arp_wifi off mcast_router 1 mcast_fast_leave off mcast_flood on neigh_suppress on group_fwd_mask 0x0 group_fwd_mask_str 0x0 group_fwd_maskhi 0x0 group_fwd_maskhi_str 0x0 vlan_tunnel off isolated off addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535
...
The following shows example output for the nv show bridge domain <domain> mac-table
command:
cumulus@leaf01:mgmt:~$ nv show bridge domain br_default mac-table
entry-id MAC address vlan interface remote-dst src-vni entry-type last-update age
-------- ----------------- ---- ---------- ----------- ------- ------------ ----------- -------
1 48:b0:2d:fd:d3:bf 10 vxlan48 extern_learn 8:06:02 8:06:02
2 48:b0:2d:4e:1c:fe 20 vxlan48 extern_learn 8:06:02 8:06:02
3 48:b0:2d:a7:4d:ce 30 vxlan48 extern_learn 8:06:02 8:06:02
4 48:b0:2d:53:d2:34 20 vxlan48 extern_learn 8:06:30 8:06:30
5 44:38:39:be:ef:bb 4063 vxlan48 extern_learn 8:06:30 8:06:30
6 48:b0:2d:2d:5f:b3 30 vxlan48 extern_learn 8:06:32 8:06:32
7 44:38:39:be:ef:bb 4006 vxlan48 extern_learn 8:06:32 8:06:32
8 48:b0:2d:93:a1:3e 10 vxlan48 extern_learn 8:06:35 8:06:35
9 44:38:39:22:01:74 4006 vxlan48 extern_learn 8:06:38 8:06:38
10 44:38:39:22:01:74 4063 vxlan48 extern_learn 8:06:38 8:06:38
11 44:38:39:22:01:7c 4006 vxlan48 extern_learn 8:06:39 8:06:39
12 44:38:39:22:01:7c 4063 vxlan48 extern_learn 8:06:39 8:06:39
13 44:38:39:22:01:8a 30 vxlan48 extern_learn 8:06:42 8:06:42
14 44:38:39:22:01:8a 20 vxlan48 extern_learn 8:06:42 8:06:42
15 44:38:39:22:01:8a 10 vxlan48 extern_learn 8:06:42 8:04:05
16 44:38:39:22:01:84 10 vxlan48 extern_learn 8:06:43 8:06:43
17 44:38:39:22:01:84 30 vxlan48 extern_learn 8:06:43 8:06:15
18 44:38:39:22:01:84 20 vxlan48 extern_learn 8:06:43 8:06:43
19 44:38:39:22:01:8a 4006 vxlan48 extern_learn 8:06:43 8:06:43
20 44:38:39:22:01:8a 4063 vxlan48 extern_learn 8:06:43 8:06:43
21 44:38:39:22:01:84 4063 vxlan48 extern_learn 8:06:43 8:06:43
22 44:38:39:22:01:84 4006 vxlan48 extern_learn 8:06:43 8:06:43
23 44:38:39:22:01:78 4063 vxlan48 extern_learn 8:06:43 8:06:43
24 44:38:39:22:01:78 4006 vxlan48 extern_learn 8:06:43 8:06:43
25 02:91:8d:cf:03:b2 vxlan48 permanent 8:06:56 8:06:56
26 00:00:00:00:00:00 vxlan48 10.0.1.34 30 permanent 8:06:43 0:28:22
27 44:38:39:22:01:78 vxlan48 10.10.10.2 4001 extern_learn 8:06:43 8:06:43
28 44:38:39:22:01:8a vxlan48 10.0.1.34 30 static 8:06:43 8:06:43
29 48:b0:2d:fd:d3:bf vxlan48 10.0.1.34 10 extern_learn 8:06:02 8:06:02
30 44:38:39:22:01:84 vxlan48 10.0.1.34 10 extern_learn 8:06:43 8:06:43
31 48:b0:2d:2d:5f:b3 vxlan48 10.0.1.34 30 extern_learn 8:06:32 8:06:32
...
The following example shows the nv show interface neighbor
command output:
cumulus@leaf01:mgmt:~$ nv show interface neighbor
Interface IP/IPV6 LLADR(MAC) State Flag
------------- ------------------------- ----------------- --------- ----------
eth0 192.168.200.1 48:b0:2d:82:3b:b3 reachable
192.168.200.251 48:b0:2d:00:00:01 stale
fe80::4ab0:2dff:fe00:1 48:b0:2d:00:00:01 reachable router
peerlink.4094 169.254.0.1 48:b0:2d:52:11:90 permanent
fe80::4ab0:2dff:fe52:1190 48:b0:2d:52:11:90 reachable router
swp51 169.254.0.1 48:b0:2d:b8:2b:bc permanent
fe80::4ab0:2dff:feb8:2bbc 48:b0:2d:b8:2b:bc reachable router
swp52 169.254.0.1 48:b0:2d:e1:08:f7 permanent
fe80::4ab0:2dff:fee1:8f7 48:b0:2d:e1:08:f7 reachable router
swp53 169.254.0.1 48:b0:2d:c0:71:8b permanent
fe80::4ab0:2dff:fec0:718b 48:b0:2d:c0:71:8b reachable router
swp54 169.254.0.1 48:b0:2d:18:f4:68 permanent
fe80::4ab0:2dff:fe18:f468 48:b0:2d:18:f4:68 reachable router
vlan10 10.1.10.3 44:38:39:22:01:78 permanent
fe80::4638:39ff:fe22:178 44:38:39:22:01:78 permanent
vlan20 10.1.20.3 44:38:39:22:01:78 permanent
fe80::4638:39ff:fe22:178 44:38:39:22:01:78 permanent
vlan30 10.1.30.3 44:38:39:22:01:78 permanent
fe80::4638:39ff:fe22:178 44:38:39:22:01:78 permanent
vlan4024_l3 10.10.10.63 44:38:39:22:01:74 noarp |ext_learn
10.10.10.64 44:38:39:22:01:7c noarp |ext_learn
10.10.10.4 44:38:39:22:01:8a noarp |ext_learn
10.10.10.3 44:38:39:22:01:84 noarp |ext_learn
10.10.10.2 44:38:39:22:01:78 noarp |ext_learn
fe80::4638:39ff:fe22:178 44:38:39:22:01:78 permanent
vlan4036_l3 10.10.10.63 44:38:39:22:01:74 noarp |ext_learn
10.10.10.64 44:38:39:22:01:7c noarp |ext_learn
10.10.10.4 44:38:39:22:01:8a noarp |ext_learn
10.10.10.3 44:38:39:22:01:84 noarp |ext_learn
10.10.10.2 44:38:39:22:01:78 noarp |ext_learn
fe80::4638:39ff:fe22:178 44:38:39:22:01:78 permanent
vxlan48 10.10.10.63 44:38:39:22:01:74 noarp |ext_learn
10.10.10.4 44:38:39:22:01:8a noarp |ext_learn
10.10.10.3 44:38:39:22:01:84 noarp |ext_learn
10.10.10.2 44:38:39:22:01:78 noarp |ext_learn
10.10.10.64 44:38:39:22:01:7c noarp |ext_learn
...
The following command shows the VLAN to VNI mapping for all bridges:
cumulus@switch:mgmt:~$nv show bridge vlan-vni-map
br_default vlan-vni-offset: 0
VLAN VNI
---- -------
10 10
20 20
30 30
The following command shows the VLAN to VNI mapping for a specific bridge:
cumulus@switch:mgmt:~$ nv show bridge domain br_default vlan-vni-map
vlan-vni-offset: 0
VLAN VNI
---- -------
10 10
20 20
30 30
General BGP Commands
If you use BGP for the underlay routing, run the vtysh show bgp summary
command to view a summary of the layer 3 fabric connectivity:
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show bgp summary
IPv4 Unicast Summary
BGP router identifier 10.10.10.1, local AS number 65101 vrf-id 0
BGP table version 13
RIB entries 25, using 4800 bytes of memory
Peers 5, using 106 KiB of memory
Peer groups 1, using 64 bytes of memory
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
spine01(swp51) 4 65199 814 805 0 0 0 00:37:34 7
spine02(swp52) 4 65199 814 805 0 0 0 00:37:34 7
spine03(swp53) 4 65199 814 805 0 0 0 00:37:34 7
spine04(swp54) 4 65199 814 805 0 0 0 00:37:34 7
leaf02(peerlink.4094) 4 65101 766 768 0 0 0 00:37:35 12
Total number of neighbors 5
show bgp ipv6 unicast summary
=============================
% No BGP neighbors found
show bgp l2vpn evpn summary
===========================
BGP router identifier 10.10.10.1, local AS number 65101 vrf-id 0
BGP table version 0
RIB entries 23, using 4416 bytes of memory
Peers 4, using 85 KiB of memory
Peer groups 1, using 64 bytes of memory
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
spine01(swp51) 4 65199 814 805 0 0 0 00:37:35 34
spine02(swp52) 4 65199 814 805 0 0 0 00:37:35 34
spine03(swp53) 4 65199 814 805 0 0 0 00:37:35 34
spine04(swp54) 4 65199 814 805 0 0 0 00:37:35 34
Total number of neighbors 4
Run the vtysh show ip route
command to examine the underlay routing and determine how the switch reaches remote VTEPs. The following example shows output from a leaf switch:
This is the routing table of the global (underlay) routing table. Use the `vrf` keyword to see routes for specific VRFs where the hosts reside.
cumulus@leaf01:mgmt:~$ sudo vtysh
leaf01# show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
C>* 10.0.1.1/32 is directly connected, lo, 00:40:02
B>* 10.0.1.2/32 [20/0] via fe80::2ef3:45ff:fef4:6f5f, swp53, weight 1, 00:40:04
* via fe80::ae56:f0ff:fef3:590c, swp54, weight 1, 00:40:04
* via fe80::c299:6bff:fec0:e1ca, swp52, weight 1, 00:40:04
* via fe80::f208:5fff:fe12:cc8c, swp51, weight 1, 00:40:04
B>* 10.0.1.254/32 [20/0] via fe80::2ef3:45ff:fef4:6f5f, swp53, weight 1, 00:35:18
* via fe80::ae56:f0ff:fef3:590c, swp54, weight 1, 00:35:18
* via fe80::c299:6bff:fec0:e1ca, swp52, weight 1, 00:35:18
* via fe80::f208:5fff:fe12:cc8c, swp51, weight 1, 00:35:18
C>* 10.10.10.1/32 is directly connected, lo, 00:42:58
B>* 10.10.10.2/32 [200/0] via fe80::c28a:e6ff:fe03:96d0, peerlink.4094, weight 1, 00:42:56
B>* 10.10.10.3/32 [20/0] via fe80::2ef3:45ff:fef4:6f5f, swp53, weight 1, 00:42:55
* via fe80::ae56:f0ff:fef3:590c, swp54, weight 1, 00:42:55
* via fe80::c299:6bff:fec0:e1ca, swp52, weight 1, 00:42:55
* via fe80::f208:5fff:fe12:cc8c, swp51, weight 1, 00:42:55
B>* 10.10.10.4/32 [20/0] via fe80::2ef3:45ff:fef4:6f5f, swp53, weight 1, 00:42:55
* via fe80::ae56:f0ff:fef3:590c, swp54, weight 1, 00:42:55
* via fe80::c299:6bff:fec0:e1ca, swp52, weight 1, 00:42:55
* via fe80::f208:5fff:fe12:cc8c, swp51, weight 1, 00:42:55
B>* 10.10.10.63/32 [20/0] via fe80::2ef3:45ff:fef4:6f5f, swp53, weight 1, 00:42:55
* via fe80::ae56:f0ff:fef3:590c, swp54, weight 1, 00:42:55
* via fe80::c299:6bff:fec0:e1ca, swp52, weight 1, 00:42:55
* via fe80::f208:5fff:fe12:cc8c, swp51, weight 1, 00:42:55
B>* 10.10.10.64/32 [20/0] via fe80::2ef3:45ff:fef4:6f5f, swp53, weight 1, 00:38:07
* via fe80::ae56:f0ff:fef3:590c, swp54, weight 1, 00:38:07
* via fe80::c299:6bff:fec0:e1ca, swp52, weight 1, 00:38:07
* via fe80::f208:5fff:fe12:cc8c, swp51, weight 1, 00:38:07
B>* 10.10.10.101/32 [20/0] via fe80::f208:5fff:fe12:cc8c, swp51, weight 1, 00:42:56
B>* 10.10.10.102/32 [20/0] via fe80::c299:6bff:fec0:e1ca, swp52, weight 1, 00:42:56
B>* 10.10.10.103/32 [20/0] via fe80::2ef3:45ff:fef4:6f5f, swp53, weight 1, 00:42:56
B>* 10.10.10.104/32 [20/0] via fe80::ae56:f0ff:fef3:590c, swp54, weight 1, 00:42:56
Show EVPN Address Family Peers
Run the vtysh show bgp l2vpn evpn summary
command to see the BGP peers participating in the EVPN address family and their states. The following example output from a leaf switch shows eBGP peering with four spine switches to exchange EVPN routes; all peering sessions are in the established state.
cumulus@leaf01:mgmt:~$ sudo vtysh
leaf01# show bgp l2vpn evpn summary
BGP router identifier 10.10.10.1, local AS number 65101 vrf-id 0
BGP table version 0
RIB entries 23, using 4416 bytes of memory
Peers 4, using 85 KiB of memory
Peer groups 1, using 64 bytes of memory
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
spine01(swp51) 4 65199 958 949 0 0 0 00:44:46 34
spine02(swp52) 4 65199 958 949 0 0 0 00:44:46 34
spine03(swp53) 4 65199 958 949 0 0 0 00:44:46 34
spine04(swp54) 4 65199 958 949 0 0 0 00:44:46 34
Total number of neighbors 4
Show EVPN VNIs
To display the configured VNIs on a network device participating in BGP EVPN, run the vtysh show bgp l2vpn evpn vni
command. This command is only relevant on a VTEP. For symmetric routing, this command displays the special layer 3 VNIs for each tenant VRF.
cumulus@leaf01:mgmt:~$ sudo vtysh
leaf01# show bgp l2vpn evpn vni
Advertise Gateway Macip: Disabled
Advertise SVI Macip: Disabled
Advertise All VNI flag: Enabled
BUM flooding: Head-end replication
Number of L2 VNIs: 3
Number of L3 VNIs: 2
Flags: * - Kernel
VNI Type RD Import RT Export RT Tenant VRF
* 20 L2 10.10.10.1:4 65101:20 65101:20 RED
* 30 L2 10.10.10.1:6 65101:30 65101:30 BLUE
* 10 L2 10.10.10.1:3 65101:10 65101:10 RED
* 4002 L3 10.1.30.2:2 65101:4002 65101:4002 BLUE
* 4001 L3 10.1.20.2:5 65101:4001 65101:4001 RED
Run the NVUE nv show evpn vni
command or the vtysh show evpn vni
command to see a summary of all VNIs and the number of MAC or ARP entries associated with each VNI.
cumulus@leaf01:mgmt:~$ nv show evpn vni
NumMacs - Number of MACs (local and remote) known for this VNI, NumArps - Number
of ARPs (IPv4 and IPv6, local and remote) known for this VNI
, NumRemVteps - Number of Remote Vteps, Bridge - Bridge to which the vni
belongs, Vlan - VLAN assoicated to MAC
VNI NumMacs NumArps NumRemVteps TenantVrf Bridge Vlan
--- ------- ------- ----------- --------- ---------- ----
10 7 4 1 RED br_default 10
20 7 4 1 RED br_default 20
30 7 4 1 BLUE br_default 30
Run the NVUE nv show evpn vni <vni>
command or the vtysh show evpn vni <vni>
command to examine EVPN information for a specific VNI in detail. The following example output shows details for the layer 2 VNI 10. The output shows the remote VTEPs that contain that VNI.
cumulus@leaf01:mgmt:~$ nv show evpn vni 10
----------------- ----------- -------
operational applied
----------------- ----------- -------
route-advertise
svi-ip off
default-gateway off
[remote-vtep] 10.0.1.34
vlan 10
bridge-domain br_default
tenant-vrf RED
vxlan-interface vxlan48
mac-count 7
host-count 4
remote-vtep-count 1
local-vtep 10.0.1.12
To show VNI BGP information run the NVUE nv show evpn vni <id> bgp-info
and nv show vrf <vrf_id> evpn bgp-info
commands, or the vtysh show bgp l2vpn evpn vni <vni>
command.
cumulus@border01:mgmt:~$ nv show vrf RED evpn bgp-info
operational
--------------------- -----------------
rd 10.10.10.1:3
local-vtep 10.0.1.12
router-mac 44:38:39:be:ef:aa
system-mac 44:38:39:22:01:7a
system-ip 10.10.10.1
[import-route-target] 65101:4001
[export-route-target] 65101:4001
Examine Local and Remote MAC Addresses for a VNI
Run the NVUE nv show evpn vni <vni> mac
command or the vtysh show evpn mac vni <vni>
command to examine all local and remote MAC addresses for a VNI. This command is only relevant for a layer 2 VNI:
cumulus@leaf01:mgmt:~$ nv show evpn vni 10 mac
LocMobSeq - local mobility sequence, RemMobSeq - remote mobility sequence,
RemoteVtep - Remote Vtep address, Esi - Remote Esi
MAC address Type LocMobSeq RemMobSeq Interface RemoteVtep Esi
----------------- ------ --------- --------- --------- ---------- ---
44:38:39:22:01:8a remote 0 0 10.0.1.34
44:38:39:22:01:78 local 0 0 peerlink
44:38:39:22:01:84 remote 0 0 10.0.1.34
48:b0:2d:5c:8a:ee local 0 0 bond1
48:b0:2d:29:c0:bb remote 0 0 10.0.1.34
48:b0:2d:c9:f8:14 remote 0 0 10.0.1.34
48:b0:2d:fa:72:e7 local 0 0 bond
Run the vtysh show evpn mac vni all
command to examine MAC addresses for all VNIs.
You can examine the details for a specific MAC addresses or query all remote MAC addresses behind a specific VTEP:
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show evpn mac vni 10 mac 94:8e:1c:0d:77:93
MAC: 94:8e:1c:0d:77:93
Remote VTEP: 10.0.1.2
Sync-info: neigh#: 0
Local Seq: 0 Remote Seq: 0
Neighbors:
No Neighbors
leaf01# show evpn mac vni 20 vtep 10.0.1.2
VNI 20
MAC Type FlagsIntf/Remote ES/VTEP VLAN Seq #'s
12:15:9a:9c:f2:e1 remote 10.0.1.2 1/0
50:88:b2:3c:08:f9 remote 10.0.1.2 0/0
f8:4f:db:ef:be:8b remote 10.0.1.2 0/0
c8:7d:bc:96:71:f3 remote 10.0.1.2 0/0
Examine Local and Remote Neighbors for a VNI
Run the vtysh show evpn arp-cache vni <vni>
command to examine all local and remote neighbors (ARP entries) for a VNI. This command is only relevant for a layer 2 VNI and the output shows both IPv4 and IPv6 neighbor entries:
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show evpn arp-cache vni 10
Number of ARPs (local and remote) known for this VNI: 6
Flags: I=local-inactive, P=peer-active, X=peer-proxy
Neighbor Type Flags State MAC Remote ES/VTEP Seq #'s
10.1.10.2 local active 76:ed:2a:8a:67:24 0/0
fe80::968e:1cff:fe0d:7793 remote active 68:0f:31:ae:3d:7a 10.0.1.2 0/0
10.1.10.101 local active 26:76:e6:93:32:78 0/0
fe80::9465:45ff:fe6d:4890 local active 26:76:e6:93:32:78 0/0
10.1.10.104 remote active 68:0f:31:ae:3d:7a 10.0.1.2 0/0
fe80::74ed:2aff:fe8a:6724 local active 76:ed:2a:8a:67:24 0/0
...
Run the vtysh show evpn arp-cache vni all
command to examine neighbor entries for all VNIs.
Examine Remote Router MAC Addresses
To examine the router MAC addresses corresponding to all remote VTEPs for symmetric routing, run the NVUE nv show vrf <vrf> evpn remote-router-mac
command or the vtysh show evpn rmac vni all
command. This command is only relevant for a layer 3 VNI:
cumulus@border01:mgmt:~$ nv show vrf RED evpn remote-router-mac
MAC address remote-vtep
----------------- -----------
44:38:39:22:01:7a 10.10.10.1
44:38:39:22:01:7c 10.10.10.64
44:38:39:22:01:8a 10.10.10.4
44:38:39:22:01:78 10.10.10.2
44:38:39:22:01:84 10.10.10.3
44:38:39:be:ef:aa 10.0.1.12
Examine Gateway Next Hops
To examine the gateway next hops for symmetric routing, run the NVUE nv show vrf <vrf> evpn nexthop-vtep
command or the vtysh show evpn next-hops vni all
command. This command is only relevant for a layer 3 VNI. The gateway next hop IP addresses correspond to the remote VTEP IP addresses. Cumulus Linux installs the remote host and prefix routes using these next hops.
cumulus@border01:mgmt:~$ nv show vrf RED evpn nexthop-vtep
Nexthop router-mac
----------- -----------------
10.0.1.12 44:38:39:be:ef:aa
10.10.10.1 44:38:39:22:01:7a
10.10.10.2 44:38:39:22:01:78
10.10.10.3 44:38:39:22:01:84
10.10.10.4 44:38:39:22:01:8a
10.10.10.64 44:38:39:22:01:7c
To show the router MAC address for a specific next hop, run the NVUE nv show vrf <vrf> evpn nexthop-vtep <ip-address>
command:
cumulus@leaf01:mgmt:~$ nv show vrf RED evpn nexthop-vtep 10.10.10.2
operational
---------- -----------------
router-mac 44:38:39:22:01:78
To show the remote host and prefix routes through a specific next hop, run the vtysh show evpn next-hops vni <vni> ip <ip-address>
command:
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show evpn next-hops vni 4001 ip 10.0.1.2
Ip: 10.0.1.2
RMAC: 44:38:39:be:ef:bb
Refcount: 2
Prefixes:
10.1.10.104/32
10.1.20.105/32
To show the VTEP IP addresses for the next hop groups, run the nv show evpn l2-nhg vtep-ip
command.
Show Access VLANs
To show access VLANs on the switch and their corresponding VNI, run the NVUE nv show evpn access-vlan-info
command or the vtysh show evpn access-vlan
command.
cumulus@border01:mgmt:~$ nv show evpn access-vlan-info
vlan
=======
Id MemberCnt Vni VniCnt VxlanIntf MemberIntf
---- --------- --- ------ --------- ----------
1 1 peerlink
10 2 10 1 vxlan48 bond1
peerlink
20 2 20 1 vxlan48 bond2
peerlink
30 2 30 1 vxlan48 bond3
peerlink
4006 1 vxlan48
4063 1 vxlan48
You can drill down and show information about a specific vlan with the nv show evpn access-vlan-info vlan <vlan>
command.
Show the VRF Routing Table in FRR
Run the NVUE nv show vrf <vrf-id> router rib <address-family> route
command or the vtysh show ip route vrf <vrf-name>
command to examine the VRF routing table. Use this command for symmetric routing to verify that remote host and prefix routes are in the VRF routing table and point to the appropriate gateway next hop.
cumulus@leaf01:mgmt:~$ nv show vrf RED router rib ipv4 route
Flags - * - selected, q - queued, o - offloaded, i - installed, S - fib-
selected, x - failed
Route Protocol Distance Uptime NHGId Metric Flags
-------------- --------- -------- -------------------- ----- ------ -----
0.0.0.0/0 kernel 255 2024-10-25T14:02:23Z 21 8192 *Si
10.1.10.0/24 connected 0 2024-10-25T14:02:33Z 100 1024 io
connected 0 2024-10-25T14:02:33Z 88 0 *Sio
10.1.20.0/24 connected 0 2024-10-25T14:02:33Z 103 1024 io
connected 0 2024-10-25T14:02:33Z 92 0 *Sio
10.1.20.105/32 bgp 20 2024-10-25T14:02:46Z 166 0 *Si
10.1.30.0/24 bgp 20 2024-10-25T14:02:39Z 154 0 *Si
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show ip route vrf RED
show ip route vrf RED
======================
Codes: K - kernel route, C - connected, S - static, R - RIP,
O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric,
> - selected route, * - FIB route, q - queued route, r - rejected route
VRF RED:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:53:46
C * 10.1.10.0/24 [0/1024] is directly connected, vlan10-v0, 00:53:46
C>* 10.1.10.0/24 is directly connected, vlan10, 00:53:46
B>* 10.1.10.104/32 [20/0] via 10.0.1.2, vlan4001 onlink, weight 1, 00:43:55
C * 10.1.20.0/24 [0/1024] is directly connected, vlan20-v0, 00:53:46
C>* 10.1.20.0/24 is directly connected, vlan20, 00:53:46
B>* 10.1.20.105/32 [20/0] via 10.0.1.2, vlan4001 onlink, weight 1, 00:20:07
...
In the output above, EVPN specifies the next hops for these routes to be onlink, or reachable over the specified SVI. This is necessary because this interface does not need to have an IP address. Even if the interface has an IP address, the next hop is not on the same subnet as it is typically the IP address of the remote VTEP (part of the underlay IP network).
Show the Global BGP EVPN Routing Table
Run the vtysh show bgp l2vpn evpn route
command to display all EVPN routes, both local and remote. Cumulus Linux bases the routes on the RD as they are across VNIs and VRFs:
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show bgp l2vpn evpn route
BGP table version is 6, local router ID is 10.10.10.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
EVPN type-1 prefix: [1]:[ESI]:[EthTag]:[IPlen]:[VTEP-IP]
EVPN type-2 prefix: [2]:[EthTag]:[MAClen]:[MAC]:[IPlen]:[IP]
EVPN type-3 prefix: [3]:[EthTag]:[IPlen]:[OrigIP]
EVPN type-4 prefix: [4]:[ESI]:[IPlen]:[OrigIP]
EVPN type-5 prefix: [5]:[EthTag]:[IPlen]:[IP]
Network Next Hop Metric LocPrf Weight Path
Extended Community
Route Distinguisher: 10.10.10.1:3
*> [2]:[0]:[48]:[00:60:08:69:97:ef]
10.0.1.1 32768 i
ET:8 RT:65101:10 RT:65101:4001 Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[26:76:e6:93:32:78]
10.0.1.1 32768 i
ET:8 RT:65101:10 RT:65101:4001 Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[26:76:e6:93:32:78]:[32]:[10.1.10.101]
10.0.1.1 32768 i
ET:8 RT:65101:10 RT:65101:4001 Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[26:76:e6:93:32:78]:[128]:[fe80::9465:45ff:fe6d:4890]
10.0.1.1 32768 i
ET:8 RT:65101:10
*> [2]:[0]:[48]:[c0:8a:e6:03:96:d0]
10.0.1.1 32768 i
ET:8 RT:65101:10 RT:65101:4001 MM:0, sticky MAC Rmac:44:38:39:be:ef:aa
*> [3]:[0]:[32]:[10.0.1.1]
10.0.1.1 32768 i
ET:8 RT:65101:10
Route Distinguisher: 10.10.10.1:4
*> [2]:[0]:[48]:[c0:8a:e6:03:96:d0]
10.0.1.1 32768 i
ET:8 RT:65101:20 RT:65101:4001 MM:0, sticky MAC Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[cc:6e:fa:8d:ff:92]
10.0.1.1 32768 i
ET:8 RT:65101:20 RT:65101:4001 Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[f0:9d:d0:59:60:5d]
10.0.1.1 32768 i
ET:8 RT:65101:20 RT:65101:4001 Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[f0:9d:d0:59:60:5d]:[128]:[fe80::ce6e:faff:fe8d:ff92]
10.0.1.1 32768 i
ET:8 RT:65101:20
*> [3]:[0]:[32]:[10.0.1.1]
10.0.1.1 32768 i
ET:8 RT:65101:20
Route Distinguisher: 10.10.10.1:6
*> [2]:[0]:[48]:[c0:8a:e6:03:96:d0]
10.0.1.1 32768 i
ET:8 RT:65101:30 RT:65101:4002 MM:0, sticky MAC Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[de:02:3b:17:c9:6d]
10.0.1.1 32768 i
ET:8 RT:65101:30 RT:65101:4002 Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[de:02:3b:17:c9:6d]:[128]:[fe80::dc02:3bff:fe17:c96d]
10.0.1.1 32768 i
ET:8 RT:65101:30
*> [2]:[0]:[48]:[ea:77:bb:f1:a7:ca]
10.0.1.1 32768 i
ET:8 RT:65101:30 RT:65101:4002 Rmac:44:38:39:be:ef:aa
*> [3]:[0]:[32]:[10.0.1.1]
10.0.1.1 32768 i
ET:8 RT:65101:30
Route Distinguisher: 10.10.10.3:3
*> [2]:[0]:[48]:[12:15:9a:9c:f2:e1]
10.0.1.2 0 65199 65102 i
RT:65102:20 RT:65102:4001 ET:8 Rmac:44:38:39:be:ef:bb
* [2]:[0]:[48]:[12:15:9a:9c:f2:e1]
10.0.1.2 0 65199 65102 i
RT:65102:20 RT:65102:4001 ET:8 Rmac:44:38:39:be:ef:bb
...
You can filter the routing table based on EVPN route type. The available options are: ead: EAD (Type-1) route es: Ethernet Segment (type-4) route macip: MAC-IP (Type-2) route multicast: Multicast prefix: An IPv4 or IPv6 prefix
Show EVPN RD Routes
To show EVPN RD routes, run the nv show vrf <vrf> router bgp address-family l2vpn-evpn route
command. This command shows the EVPN RD routes in brief format to improve performance for high scale environments. To show the EVPN RD routes in more detail, run the nv show vrf <vrf> router bgp address-family l2vpn-evpn route --view=detail
command. To show the information in json format, run the nv show vrf <vrf> router bgp address-family l2vpn-evpn route -o json
command.
cumulus@leaf01:mgmt:~$ nv show vrf default router bgp address-family l2vpn-evpn route
PathCnt - number of L2VPN EVPN per (RD, route-type) paths
Route rd route-type PathCnt
---------------------------------------------------------------------- ------------- ---------- -------
[10.10.10.1:2]:[5]:[0]:[10.1.30.0/24] 10.10.10.1:2 5 1
[10.10.10.1:3]:[5]:[0]:[10.1.10.0/24] 10.10.10.1:3 5 1
[10.10.10.1:3]:[5]:[0]:[10.1.20.0/24] 10.10.10.1:3 5 1
[10.10.10.1:4]:[2]:[0]:[44:38:39:22:01:78] 10.10.10.1:4 2 1
[10.10.10.1:4]:[2]:[0]:[48:b0:2d:7f:74:13] 10.10.10.1:4 2 1
[10.10.10.1:4]:[2]:[0]:[48:b0:2d:7f:74:13]:[10.1.20.102] 10.10.10.1:4 2 1
[10.10.10.1:4]:[2]:[0]:[48:b0:2d:7f:74:13]:[fe80::4ab0:2dff:fe7f:7413] 10.10.10.1:4 2 1
[10.10.10.1:4]:[2]:[0]:[48:b0:2d:a4:40:62] 10.10.10.1:4 2 1
[10.10.10.1:4]:[3]:[0]:[10.0.1.12] 10.10.10.1:4 3 1
[10.10.10.1:5]:[2]:[0]:[44:38:39:22:01:78] 10.10.10.1:5 2 1
[10.10.10.1:5]:[2]:[0]:[48:b0:2d:99:9e:04] 10.10.10.1:5 2 1
[10.10.10.1:5]:[2]:[0]:[48:b0:2d:c2:f9:21] 10.10.10.1:5 2 1
[10.10.10.1:5]:[2]:[0]:[48:b0:2d:c2:f9:21]:[10.1.30.103] 10.10.10.1:5 2 1
[10.10.10.1:5]:[2]:[0]:[48:b0:2d:c2:f9:21]:[fe80::4ab0:2dff:fec2:f921] 10.10.10.1:5 2 1
[10.10.10.1:5]:[3]:[0]:[10.0.1.12] 10.10.10.1:5 3 1
[10.10.10.1:6]:[2]:[0]:[44:38:39:22:01:78] 10.10.10.1:6 2 1
[10.10.10.1:6]:[2]:[0]:[48:b0:2d:5c:8a:ee] 10.10.10.1:6 2 1
[10.10.10.1:6]:[2]:[0]:[48:b0:2d:fa:72:e7] 10.10.10.1:6 2 1
[10.10.10.1:6]:[2]:[0]:[48:b0:2d:fa:72:e7]:[10.1.10.101] 10.10.10.1:6 2 1
[10.10.10.1:6]:[2]:[0]:[48:b0:2d:fa:72:e7]:[fe80::4ab0:2dff:fefa:72e7] 10.10.10.1:6 2 1
[10.10.10.1:6]:[3]:[0]:[10.0.1.12] 10.10.10.1:6 3 1
[10.10.10.2:2]:[5]:[0]:[10.1.30.0/24] 10.10.10.2:2 5 5
[10.10.10.2:3]:[5]:[0]:[10.1.10.0/24] 10.10.10.2:3 5 5
[10.10.10.2:3]:[5]:[0]:[10.1.20.0/24] 10.10.10.2:3 5 5
[10.10.10.3:2]:[5]:[0]:[10.1.30.0/24] 10.10.10.3:2 5 5
[10.10.10.3:3]:[5]:[0]:[10.1.10.0/24] 10.10.10.3:3 5 5
[10.10.10.3:3]:[5]:[0]:[10.1.20.0/24] 10.10.10.3:3 5 5
[10.10.10.3:4]:[2]:[0]:[44:38:39:22:01:8a] 10.10.10.3:4 2 5
[10.10.10.3:4]:[2]:[0]:[48:b0:2d:48:21:9d] 10.10.10.3:4 2 5
[10.10.10.3:4]:[2]:[0]:[48:b0:2d:82:43:48] 10.10.10.3:4 2 5
[10.10.10.3:4]:[2]:[0]:[48:b0:2d:82:43:48]:[10.1.20.105] 10.10.10.3:4 2 5
[10.10.10.3:4]:[2]:[0]:[48:b0:2d:82:43:48]:[fe80::4ab0:2dff:fe82:4348] 10.10.10.3:4 2 5
[10.10.10.3:4]:[3]:[0]:[10.0.1.34] 10.10.10.3:4 3 5
[10.10.10.3:5]:[2]:[0]:[44:38:39:22:01:8a] 10.10.10.3:5 2 5
[10.10.10.3:5]:[2]:[0]:[48:b0:2d:d5:45:6f] 10.10.10.3:5 2 5
[10.10.10.3:5]:[2]:[0]:[48:b0:2d:d5:45:6f]:[10.1.30.106] 10.10.10.3:5 2 5
[10.10.10.3:5]:[2]:[0]:[48:b0:2d:d5:45:6f]:[fe80::4ab0:2dff:fed5:456f] 10.10.10.3:5 2 5
[10.10.10.3:5]:[2]:[0]:[48:b0:2d:df:a8:20] 10.10.10.3:5 2 5
[10.10.10.3:5]:[3]:[0]:[10.0.1.34] 10.10.10.3:5 3 5
[10.10.10.3:6]:[2]:[0]:[44:38:39:22:01:8a] 10.10.10.3:6 2 5
[10.10.10.3:6]:[2]:[0]:[48:b0:2d:29:c0:bb] 10.10.10.3:6 2 5
[10.10.10.3:6]:[2]:[0]:[48:b0:2d:29:c0:bb]:[10.1.10.104] 10.10.10.3:6 2 5
[10.10.10.3:6]:[2]:[0]:[48:b0:2d:29:c0:bb]:[fe80::4ab0:2dff:fe29:c0bb] 10.10.10.3:6 2 5
[10.10.10.3:6]:[2]:[0]:[48:b0:2d:c9:f8:14] 10.10.10.3:6 2 5
[10.10.10.3:6]:[3]:[0]:[10.0.1.34] 10.10.10.3:6 3 5
[10.10.10.4:2]:[5]:[0]:[10.1.30.0/24] 10.10.10.4:2 5 5
[10.10.10.4:3]:[5]:[0]:[10.1.10.0/24] 10.10.10.4:3 5 5
[10.10.10.4:3]:[5]:[0]:[10.1.20.0/24] 10.10.10.4:3 5 5
[10.10.10.4:4]:[2]:[0]:[44:38:39:22:01:84] 10.10.10.4:4 2 5
[10.10.10.4:4]:[2]:[0]:[48:b0:2d:48:21:9d] 10.10.10.4:4 2 5
[10.10.10.4:4]:[2]:[0]:[48:b0:2d:82:43:48] 10.10.10.4:4 2 5
[10.10.10.4:4]:[2]:[0]:[48:b0:2d:82:43:48]:[10.1.20.105] 10.10.10.4:4 2 5
[10.10.10.4:4]:[2]:[0]:[48:b0:2d:82:43:48]:[fe80::4ab0:2dff:fe82:4348] 10.10.10.4:4 2 5
[10.10.10.4:4]:[3]:[0]:[10.0.1.34] 10.10.10.4:4 3 5
[10.10.10.4:5]:[2]:[0]:[44:38:39:22:01:84] 10.10.10.4:5 2 5
[10.10.10.4:5]:[2]:[0]:[48:b0:2d:d5:45:6f] 10.10.10.4:5 2 5
[10.10.10.4:5]:[2]:[0]:[48:b0:2d:d5:45:6f]:[10.1.30.106] 10.10.10.4:5 2 5
[10.10.10.4:5]:[2]:[0]:[48:b0:2d:d5:45:6f]:[fe80::4ab0:2dff:fed5:456f] 10.10.10.4:5 2 5
[10.10.10.4:5]:[2]:[0]:[48:b0:2d:df:a8:20] 10.10.10.4:5 2 5
[10.10.10.4:5]:[3]:[0]:[10.0.1.34] 10.10.10.4:5 3 5
[10.10.10.4:6]:[2]:[0]:[44:38:39:22:01:84] 10.10.10.4:6 2 5
[10.10.10.4:6]:[2]:[0]:[48:b0:2d:29:c0:bb] 10.10.10.4:6 2 5
[10.10.10.4:6]:[2]:[0]:[48:b0:2d:29:c0:bb]:[10.1.10.104] 10.10.10.4:6 2 5
[10.10.10.4:6]:[2]:[0]:[48:b0:2d:29:c0:bb]:[fe80::4ab0:2dff:fe29:c0bb] 10.10.10.4:6 2 5
[10.10.10.4:6]:[2]:[0]:[48:b0:2d:c9:f8:14] 10.10.10.4:6 2 5
[10.10.10.4:6]:[3]:[0]:[10.0.1.34] 10.10.10.4:6 3 5
[10.10.10.63:2]:[5]:[0]:[10.1.10.0/24] 10.10.10.63:2 5 5
[10.10.10.63:2]:[5]:[0]:[10.1.20.0/24] 10.10.10.63:2 5 5
[10.10.10.63:3]:[5]:[0]:[10.1.30.0/24] 10.10.10.63:3 5 5
[10.10.10.64:2]:[5]:[0]:[10.1.10.0/24] 10.10.10.64:2 5 5
[10.10.10.64:2]:[5]:[0]:[10.1.20.0/24] 10.10.10.64:2 5 5
[10.10.10.64:3]:[5]:[0]:[10.1.30.0/24] 10.10.10.64:3 5 5
Show a Specific EVPN Route
To drill down on a specific route for more information, run the vtysh show bgp l2vpn evpn route rd <rd-value>
command. This command displays all EVPN routes with that RD and with the path attribute details for each path. Additional filtering is possible based on route type or by specifying the MAC and/or IP address. The following example shows the specific MAC/IP route of server05. The output shows that this remote host is behind VTEP 10.10.10.3 and is reachable through four paths; one through each spine switch. This example is from a symmetric routing configuration, so the route shows both the layer 2 VNI (20) and the layer 3 VNI (4001), as well as the EVPN route target attributes corresponding to each and the associated router MAC address.
cumulus@leaf01:mgmt:~$ sudo vtysh
leaf01# show bgp l2vpn evpn route rd 10.10.10.3:3 mac 12:15:9a:9c:f2:e1 ip 10.1.20.105
BGP routing table entry for 10.10.10.3:3:[2]:[0]:[48]:[12:15:9a:9c:f2:e1]:[32]:[10.1.20.105]
Paths: (4 available, best #1)
Advertised to non peer-group peers:
spine01(swp51) spine02(swp52) spine03(swp53) spine04(swp54)
Route [2]:[0]:[48]:[12:15:9a:9c:f2:e1]:[32]:[10.1.20.105] VNI 20/4001
65199 65102
10.0.1.2 from spine01(swp51) (10.10.10.101)
Origin IGP, valid, external, bestpath-from-AS 65199, best (Router ID)
Extended Community: RT:65102:20 RT:65102:4001 ET:8 Rmac:44:38:39:be:ef:bb
Last update: Fri Jan 15 08:16:24 2021
Route [2]:[0]:[48]:[12:15:9a:9c:f2:e1]:[32]:[10.1.20.105] VNI 20/4001
65199 65102
10.0.1.2 from spine04(swp54) (10.10.10.104)
Origin IGP, valid, external
Extended Community: RT:65102:20 RT:65102:4001 ET:8 Rmac:44:38:39:be:ef:bb
Last update: Fri Jan 15 08:16:24 2021
Route [2]:[0]:[48]:[12:15:9a:9c:f2:e1]:[32]:[10.1.20.105] VNI 20/4001
65199 65102
10.0.1.2 from spine02(swp52) (10.10.10.102)
Origin IGP, valid, external
Extended Community: RT:65102:20 RT:65102:4001 ET:8 Rmac:44:38:39:be:ef:bb
Last update: Fri Jan 15 08:16:24 2021
Route [2]:[0]:[48]:[12:15:9a:9c:f2:e1]:[32]:[10.1.20.105] VNI 20/4001
65199 65102
10.0.1.2 from spine03(swp53) (10.10.10.103)
Origin IGP, valid, external
Extended Community: RT:65102:20 RT:65102:4001 ET:8 Rmac:44:38:39:be:ef:bb
Last update: Fri Jan 15 08:16:24 2021
Displayed 4 paths for requested prefix
- Only use global VNIs. Even though the switch exchanges VNI values in the type-2 and type-5 routes, Cumulus Linux does not use the received values when installing the routes into the forwarding plane but uses the local configuration instead. Ensure that the VLAN to VNI mappings and the layer 3 VNI assignment for a tenant VRF are the same throughout the network.
- If the remote host is dual attached, the next hop for the EVPN route is the anycast IP address of the remote MLAG pair when MLAG is active.
Show the VNI EVPN Routing Table
The switch maintains the received EVPN routes in the global EVPN routing table, even if there are no appropriate local VNIs to import them into. For example, a spine maintains the global EVPN routing table even though there are no VNIs present in the table. When local VNIs are present, the switch imports received EVPN routes into the per-VNI routing tables according to the route target attributes. You can examine the per-VNI routing table with the vtysh show bgp vni <vni>
command:
leaf01# show bgp vni 10
BGP table version is 351, local router ID is 10.10.10.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
EVPN type-1 prefix: [1]:[ESI]:[EthTag]:[IPlen]:[VTEP-IP]:[Frag-id]
EVPN type-2 prefix: [2]:[EthTag]:[MAClen]:[MAC]:[IPlen]:[IP]
EVPN type-3 prefix: [3]:[EthTag]:[IPlen]:[OrigIP]
EVPN type-4 prefix: [4]:[ESI]:[IPlen]:[OrigIP]
EVPN type-5 prefix: [5]:[EthTag]:[IPlen]:[IP]
Network Next Hop Metric LocPrf Weight Path
*> [2]:[0]:[48]:[44:38:39:00:00:32]:[32]:[10.1.10.101]
10.0.1.12 (leaf01)
32768 i
ET:8 RT:65101:10 RT:65101:4001 Rmac:44:38:39:be:ef:aa
*> [2]:[0]:[48]:[44:38:39:00:00:32]:[128]:[fe80::4638:39ff:fe00:32]
10.0.1.12 (leaf01)
32768 i
ET:8 RT:65101:10
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (leaf02)
0 65102 65199 65104 i
RT:65104:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (leaf02)
0 65102 65199 65103 i
RT:65103:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine02)
0 65199 65104 i
RT:65104:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine02)
0 65199 65103 i
RT:65103:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine04)
0 65199 65104 i
RT:65104:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine04)
0 65199 65103 i
RT:65103:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine03)
0 65199 65104 i
RT:65104:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine03)
0 65199 65103 i
RT:65103:10 ET:8
* [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine01)
0 65199 65104 i
RT:65104:10 ET:8
*> [2]:[0]:[48]:[44:38:39:00:00:3e]:[128]:[fe80::4638:39ff:fe00:3e]
10.0.1.34 (spine01)
0 65199 65103 i
RT:65103:10 ET:8
...
To display the VNI routing table for all VNIs, run the vtysh show bgp l2vpn evpn route vni all
command.
To view the EVPN RIB with NVUE, run the nv show vrf <vrf> router bgp address-family l2vpn-evpn route
command.
Show the VRF BGP Routing Table
For symmetric routing, the switch imports received type-2 and type-5 routes into the VRF routing table (according to address family: IPv4 unicast or IPv6 unicast) based on a match on the route target attributes. To examine the BGP VRF routing table, run the vtysh show bgp vrf <vrf-name> ipv4 unicast
and show bgp vrf <vrf-name> ipv6 unicast
command.
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show bgp vrf RED ipv4 unicast
BGP table version is 2, local router ID is 10.1.20.2, vrf id 24
Default local pref 100, local AS 65101
Status codes: s suppressed, d damped, h history, * valid, > best, = multipath,
i internal, r RIB-failure, S Stale, R Removed
Nexthop codes: @NNN nexthop's vrf id, < announce-nh-self
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
* 10.1.10.104/32 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
*> 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.1.20.105/32 10.0.1.2< 0 65199 65102 i
*> 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
* 10.0.1.2< 0 65199 65102 i
Displayed 2 routes and 16 total paths
Support for EVPN Neighbor Discovery (ND) Extended Community
In EVPN VXLAN with ARP and ND suppression where you only configure the VTEPs for layer 2, EVPN needs to carry additional information for the attached devices so proxy ND can provide the correct information to attached hosts. Without this information, hosts cannot configure their default routers or lose their existing default router information. Cumulus Linux supports the EVPN Neighbor Discovery (ND) Extended Community with a type field value of 0x06, a subtype field value of 0x08 (ND Extended Community), and a router flag; this enables the switch to determine if a particular IPv6-MAC pair belongs to a host or a router.
The following configurations use the router flag (R-bit):
- Centralized VXLAN routing with a gateway router.
- A layer 2 switch with ARP and ND suppression.
When the MAC/IP (type-2) route contains the IPv6-MAC pair with the R-bit flag, the route belongs to a router. If the R-bit is zero, the route belongs to a host. If the router is in a local LAN segment, the switch implementing the proxy ND function learns of this information by snooping on neighbor advertisement messages for the associated IPv6 address. Other EVPN peers exchange this information by using the ND extended community in BGP updates.
To show that the neighbor table includes the EVPN arp-cache and that the IPv6-MAC entry belongs to a router, run the vtysh show evpn arp-cache vni <vni> ip <address>
command. For example:
cumulus@leaf01:mgmt:~$ sudo vtysh
...
leaf01# show evpn arp-cache vni 20 ip 10.1.20.105
IP: 10.1.20.105
Type: remote
State: active
MAC: 12:15:9a:9c:f2:e1
Sync-info: -
Remote VTEP: 10.0.1.2
Local Seq: 0 Remote Seq: 0
Examine MAC Moves
The first time a MAC moves from behind one VTEP to behind another, BGP associates a MAC Mobility (MM) extended community attribute of sequence number 1, with the type-2 route for that MAC. From there, each time this MAC moves to a new VTEP, the MM sequence number increments by 1. You can examine the MM sequence number associated with a MAC’s type-2 route with the vtysh show bgp l2vpn evpn route vni <vni> mac <mac>
command. The example output below shows the type-2 route for a MAC that has moved three times:
cumulus@switch:~$ sudo vtysh
...
switch# show bgp l2vpn evpn route vni 10109 mac 00:02:22:22:22:02
BGP routing table entry for [2]:[0]:[0]:[48]:[00:02:22:22:22:02]
Paths: (1 available, best #1)
Not advertised to any peer
Route [2]:[0]:[0]:[48]:[00:02:22:22:22:02] VNI 10109
Local
6.0.0.184 from 0.0.0.0 (6.0.0.184)
Origin IGP, localpref 100, weight 32768, valid, sourced, local, bestpath-from-AS Local, best
Extended Community: RT:650184:10109 ET:8 MM:3
AddPath ID: RX 0, TX 10350121
Last update: Tue Feb 14 18:40:37 2017
Displayed 1 paths for requested prefix
Examine Static MAC Addresses
You can identify static or sticky MACs in EVPN by the presence of MM:0, sticky MAC
in the Extended Community line of the output from the vtysh show bgp l2vpn evpn route vni <vni> mac <mac>
command.
cumulus@switch:~$ sudo vtysh
...
switch# show bgp l2vpn evpn route vni 10101 mac 00:02:00:00:00:01
BGP routing table entry for [2]:[0]:[0]:[48]:[00:02:00:00:00:01]
Paths: (1 available, best #1)
Not advertised to any peer
Route [2]:[0]:[0]:[48]:[00:02:00:00:00:01] VNI 10101
Local
172.16.130.18 from 0.0.0.0 (172.16.130.18)
Origin IGP, localpref 100, weight 32768, valid, sourced, local, bestpath-from-AS Local, best
Extended Community: ET:8 RT:60176:10101 MM:0, sticky MAC
AddPath ID: RX 0, TX 46
Last update: Tue Apr 11 21:44:02 2017
Displayed 1 paths for requested prefix
Enable FRR Debug Logs
To troubleshoot EVPN, enable FRR debug logs. The relevant debug options are:
Option |
Description |
---|---|
debug zebra vxlan |
Traces VNI addition and deletion (local and remote) as well as MAC and neighbor addition and deletion (local and remote). |
debug zebra kernel |
Traces actual netlink messages exchanged with the kernel, which includes everything, not just EVPN. |
debug bgp updates |
Traces BGP update exchanges, including all updates. The output also shows EVPN specific information. |
debug bgp zebra |
Traces interactions between BGP and zebra for EVPN (and other) routes. |
ICMP echo Replies and the ping Command
When you run the ping -I
command and specify an interface, you do not receive an ICMP echo reply. However, when you run the ping
command without the -I
option, everything works as expected.
ping -I
command example:
cumulus@switch:default:~:# ping -I swp2 10.0.10.1
PING 10.0.10.1 (10.0.10.1) from 10.0.0.2 swp1.5: 56(84) bytes of data.
ping
command example:
cumulus@switch:default:~:# ping 10.0.10.1
PING 10.0.10.1 (10.0.10.1) 56(84) bytes of data.
64 bytes from 10.0.10.1: icmp_req=1 ttl=63 time=4.00 ms
64 bytes from 10.0.10.1: icmp_req=2 ttl=63 time=0.000 ms
64 bytes from 10.0.10.1: icmp_req=3 ttl=63 time=0.000 ms
64 bytes from 10.0.10.1: icmp_req=4 ttl=63 time=0.000 ms
^C
--- 10.0.10.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 0.000/1.000/4.001/1.732 ms
When you send an ICMP echo request to an IP address that is not in the same subnet using the ping -I
command, Cumulus Linux creates a failed ARP entry for the destination IP address.
For more information, refer to this article.